If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-19x-10=0
a = 8; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·8·(-10)
Δ = 681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{681}}{2*8}=\frac{19-\sqrt{681}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{681}}{2*8}=\frac{19+\sqrt{681}}{16} $
| 3/2x+3=1/5x+9 | | 3(6x+8)-3=18x+21 | | 2x+7=9+8 | | 2+3x8-2+1=30 | | -12+x=39 | | 9x-21=4x+9 | | -4g=196 | | 3m=2+7 | | |4x-11|=17 | | -4y=136 | | 11+p=p-6 | | 4;6=-2+2y | | 3/5-3-5(x/2-3)=3/2(x/5-1)-3 | | 9x+4+16x-4+80=180 | | 1.9x+.2(10-x)=12.2 | | X^3+12x-19=0 | | -3;2a+5=-1 | | 15x-6x=1x-16 | | 3(k-2)=21 | | 9x+4+16x-4=180 | | -3(x-17)=-21 | | 3(k-2=21 | | 9x+4=16x-4+80 | | 6a-(10-a)=20-(a+2) | | 6e=102 | | 1,1=-4+5s | | (1-y)(5y+2)=0 | | x+4.9=6.86 | | 8w=129 | | x2+2x3=40 | | 112-w=158 | | 6x-(10x-8)=24-4x |